

QNX Software Systems 1

HTML5-Hardware Communication
with PPS Messaging
Andy Gryc, Senior Product Marketing Manager, Automotive
Kerry Johnson, Senior Product Marketing Manager, Automotive
QNX Software Systems Limited
agryc@qnx.com, kjohnson@qnx.com

Introduction
Human-Machine Interfaces (HMIs) developed with HTML5 reside in a high-level,
virtualized environment, and they work well in this environment. This fact does
not preclude their needing to access hardware, however. In mobile devices, for
example, they need to retrieve the device orientation and, if there are GPS or
accelerometer chips, information these chips provide for applications that use
geo-location. In-vehicle systems need to retrieve even more information from
low-level components such as the CAN bus, GPIO pins, and I2C and SPI devices.

Writing specific interfaces to communicate between the HMI and each low-level
service is a costly—and likely unsustainable—proposal. A better approach is to
use an HMI-agnostic, asynchronous messaging model such as Persistent
Publish/Subscribe (PPS). A service for pushing out changes and receiving
notifications, PPS provides a simple and effective way for the HMI to
communicate with low-level components and the vehicle hardware.

Drawing on our experience building in-vehicle systems, we will describe how a
PPS messaging model facilitates communication between an HTML5 HMI and
low-level components.

Figure 1. A high-level view of the QNX CAR 2 platform architecture showing how PPS is
used to communicate between the HMI and lower-level components

HTML5-Hardware Communication with PPS Messaging

QNX Software Systems 2

The problem
A problem facing developers of almost all but the simplest systems is the
increasing diversity and complexity of components at all levels. On the one hand,
an automotive infotainment system integrate many devices and services—from
multimedia players to virtual mechanics; on the other, pressures such as release
schedules, budgets and re-usability needs have made HMI development in
native C/C++ code prohibitively expensive and too time-consuming. HTML5 and
its ancillary technologies (CSS3, JavaScript, AJAX, JSON, etc.) offer an excellent,
non-proprietary solution for building rich, device-agnostic HMIs. Unfortunately,
like other high-level HMI technologies, HTML5 doesn’t offer a simple solution for
communicating between the HMI layer and the many low-level components
found in today’s systems.

With HTML5 becoming the HMI technology of choice, the problem facing system
architects, then, is finding or devising a light-weight messaging model that
bridges the gap between the HTML5 layer and disparate low-level components.
Further, since a) many systems must be able to expand to include new devices
and technologies, and b) many HMIs must accommodate applications using
different HMI technologies, such as Elektrobit GUIDE and Qt, this messaging
model must be open. That is, it must be able to integrate these new components
and technologies, easily and efficiently.

Persistent
Publish/Subsribe
To understand how PPS can
simplify the design of embedded
applications that must support a
wide range of devices and software
components, as well as
communicate with a sophisticated
HMI, we need to look at some of
the details of how PPS works.

An Object-based System
The QNX implementation of PPS is
an object-based service with
publishers and subscribers in a
loosely coupled messaging
architecture. Any PPS client can be
a publisher only, a subscriber only,
or both a publisher and a
subscriber, as required by the
implementation.

PPS objects are integrated into the
file system pathname space, and
publishing is asynchronous. Publishers modify objects and their attributes, and
write them to the filesystem. When any publisher changes an object, the PPS
service informs clients subscribed to that object of the change. PPS clients can
subscribe to multiple objects, and PPS objects can have multiple publishers as
well as multiple subscribers. Thus, publishers with access to data that applies to

Binary or human-readable objects?

A PPS service can be designed to use
either binary or human-readable objects.

We chose to use human-readable objects
and attributes for PPS, considering that
the benefits to development and
debugging outweigh the cost of the larger
objects.

Human-readable objects allow debugging
from the command-line using simple
filesystem utilities, such as cat for
subscribe and echo for publish. For
example:

 cat /pps/media/PlayCurrent
 cat /pps/media/.all?wait

or:

 echo
"attr::value">>/pps/objectfilename

Similarly, debugging information,
including PPS object and attributes, can
be retrieved by a simple program that
subscribes to an object and prints.

HTML5-Hardware Communication with PPS Messaging

QNX Software Systems 3

different object attributes can use one object to communicate their information
to all that object’s subscribers.

PPS clients must know which PPS objects are of interest. If they are publishers,
they must know what to publish and when; if they are subscribers, they must
know to which objects they must subscribe, and which object attributes interest
them. PPS clients do not have to manage errors, or buffers beyond what they
need for open(), read() and write() POSIX API calls, confirming that they can
make sense of what they read, and determining if they want their reads to be
blocking or non-blocking.

Since PPS leverages the services of
standard POSIX file systems, it can work
with any programming language or
application environment. A component
written in one language can communicate
with components written in any other
language. No special knowledge of the
other components is required.

Persistence
A Persistent Publish/Subscribe service can
maintain data across reboots. Persistence
is a characteristic determined by the
system designer, and is set for individual
attributes.

When PPS is running it maintains its
objects in memory, but saves persistent
objects to appropriate storage, either on
demand or at shutdown. It restores these
objects on startup, either immediately, or on first access. Of course, the
underlying persistent storage depends on a reliable file system and on storage
media, such as a hard disk, NAND or NOR flash.

As well as ensuring data persistence across reboots, PPS can simplify startups.
With many other messaging models, if a client comes up after the server, it must
request up-to-date data from the server, in case something changed between
the times the server and the client started up. This is also true if a client loses
contact with a server, and it is true for each and every client on the system. With
PPS, however, the service restores its persistent objects on startup and
maintains them as they change. No matter when a client starts or reconnects it
needs only to read these objects to acquire current data.

System Scalability
With PPS, publisher and subscriber do not know each other; their only
connection is an object that has a meaning and purpose for both of them. This
messaging model gives developers great flexibility when designing a system: they
can, if necessary, delay decisions on module connection points and data flow
until runtime. Because such decisions are neither hardcoded nor directly linked,
they can be adapted as situations or requirements evolve; they can even change
dynamically as the system runs.

The loosely-coupled PPS messaging model also simplifies the integration of new
software components. Since publisher and subscriber do not have to know each
other, developers adding components need only to determine what these new

Figure 2. PPS clients and objects.
Client A is only a subscriber;
client B is only a publisher, and
Client C is both a publisher and
a subscriber.

HTML5-Hardware Communication with PPS Messaging

QNX Software Systems 4

components should publish, and what data they need other PPS clients to
publish. No fine-tuning of APIs is required, and system complexity does not
increase as components are added.

QNX CAR 2 application platform
The QNX CAR 2 application platform offers an ideal use-case for the Persistent
Publish/Subscribe messaging model. From the user’s perspective, key
capabilities of this platform include:

• HMI: HTML5-based HMI designed to support easy branding, reskinning and
personalization

• Information and entertainment: multimedia (audio and video); AM, FM and
HD radio; streaming Pandora and TuneIn internet radio; Weather Network
integrated weather reporting; Apple and DLNA support for phone- and
home-based media

• Automotive interfaces: climate control and virtual mechanic

• Navigation, handsfree, speech, social networking

As can be seen from the above list, and not surprisingly for an automotive
infotainment platform, the QNX CAR 2 platform supports myriad applications
and a wide range of low-level software components directly connected to
hardware devices. It thus requires a simple and scalable messaging model to
handle communications between many disparate components.

JavaScript PPS wrapper sample

The JNEXT code sample shows some basic interactions between the HMI and
the PPS service. They are adapted from the QNX CAR 2 application platform.

// initialize the object
var PPS_COMMANDS = "/pps/services/bluetooth/control";
var commandPPS;
commandPPS = new JNEXT.PPS();
commandPPS.init();

// assign the event handler to listen for changes

commandPPS.onChange = function(e) {
 // code to execute on change event
}

// open object for read/write

commandPPS.open(PPS_COMMANDS, JNEXT.PPS_RDWR);

//read object and retrieve attributes
commandPPS.read();
var myPPSData = commandPPS.ppsObj; //gets PPS object in
key:value format

//write JSON style object, which consist of key:value pairs to
PPS
commandPPS.write({
 msg:"key",
 dat:”Message One”
});

HTML5-Hardware Communication with PPS Messaging

QNX Software Systems 5

The HMI for the QNX CAR 2 platform uses HTML5 with a JavaScript framework
that includes the Sencha and jQuery JavaScript libraries. The system
architecture is designed to support easy integration of other HMI technologies
such as Adobe AIR and Elektrobit GUIDE. The HTML5 and Cascading Style
Sheets (specifically, CSS3) facilitate migration of applications to and from the in-
vehicle system and mobile devices (smartphones and tablets).

The PPS messaging handles communications between most system
components and the HMI. Since PPS messaging is technology- and language-
agnostic, only a small number of APIs is needed to provide the interfaces
between the HTML5 HMI and the underlying components. Specifically:

• a PPS API handles communications between the HMI and the PPS service

• an SQL API interfaces with local media databases

UI core APIs handle communications between the HTML5 layer and a user-
interface core component, and between this component and other HMI
technologies, such as Adobe AIR and Elektrobit GUIDE

Figure 3. A use case showing communication between different QNX CAR 2 components:
a) The driver speaks a command. b) The speech service processes the statement
and publishes PPS objects. c) The navigation service, having subscribed for
navigation-related PPS objects, receives an update, processes the requests and
publishes PPS objects. d) The HTML5 / Web Engine is updated; it then renders the
required user interface elements, and uses the UI core to display the result.

Communication between the HTML5 HMI and the hardware is handled with
JavaScript wrapper classes and JNEXT. C/C++ programs interface directly with
the vehicle hardware, and read and write the relevant PPS objects. To access
this information from the HMI, JavaScript in the HTML5 HMI can call a
JavaScript wrapper class to communicate with a JavaScript PPS class. The
wrapper class exposes a natural class-based JavaScript API to other callers.
Internally, the wrapper makes calls to an instance of a PPS class. The PPS class
uses JNEXT (or some other mechanism) to allow the JavaScript to call into the
native code and read and write relevant PPS objects.

HTML5-Hardware Communication with PPS Messaging

As the diagram below shows, the overall architecture for the QNX CAR 2
application platform is both simple and flexible. Because the PPS messaging
model is loosely coupled the system architecture is very flexible. If a new
component or device is added, very little work is required; the new component
must publish relevant data, and subscribe to the relevant PPS objects, while
existing components must do the same for this new component if they need to
communicate with it. Similarly, even changing the HMI technology would not
cause great disruption in the underlying layers. All that would be required would
be a change to the relevant API.

Conclusion
HTML5 is fast becoming not just a popular HMI technology, but the preferred
environment for delivering rich, flexible user interfaces. Our experience with the
QNX CAR 2 application platform has shown us that HTML is no longer just the
standard for presenting web content, but a viable technology for HMIs for all
sorts of applications—connected and not connected, using browser-based or
HTML5 engine-only environments. We have also seen how a PPS messaging
model facilitates communication between the many QNX CAR platform
components, technologies and devices. Equally important, PPS enables a
flexible architecture that requires relatively little work to integrate new devices
and technologies.

About QNX Software Systems
QNX Software Systems is the leading global provider of innovative embedded
technologies, including middleware, development tools, and operating systems. The
component-based architectures of the QNX® Neutrino® RTOS, QNX Momentics® Tool
Suite, and QNX Aviage® middleware family together provide the industry’s most reliable
and scalable framework for building high-performance embedded systems. Global
leaders such as Cisco, Daimler, General Electric, Lockheed Martin, and Siemens
depend on QNX technology for vehicle telematics and infotainment systems, industrial
robotics, network routers, medical instruments, security and defense systems, and other
mission- or life-critical applications. The company is headquartered in Ottawa, Canada,
and distributes products in over 100 countries worldwide.

www.qnx.com
© 2012 QNX Software Systems Limited, a subsidiary of Research In Motion Ltd. All
rights reserved. QNX, Momentics, Neutrino, Aviage, Photon and Photon microGUI are
trademarks of QNX Software Systems Limited, which are registered trademarks and/or
used in certain jurisdictions. All other trademarks belong to their respective owners.
302225 MC411.110

